Vidya Bhawan, Balika Vidyapith, Lakhisarai

Subject:-Mathematics

Class:- XI ST:-Prabhat Ranjan Date:-14-12-21
Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{cases}$

The given function is

$$
\begin{aligned}
& f(x)= \begin{cases}2 x+3, & x \leq 0 \\
3(x+1), & x>0\end{cases} \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}[2 x+3]=2(0)+3=3 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)=3(0+1)=3 \\
& \therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(x)=3
\end{aligned}
$$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6
$$

$$
\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=6
$$

Question:-

Evaluate $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
Solution:-

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
\frac{|x|}{x}, & x \neq 0 \\
0, & x=0
\end{aligned}\right. \\
& \begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left[\frac{|x|}{x}\right] \\
& \left.=\lim _{x \rightarrow 0}\left(\frac{-x}{x}\right) \quad \text { [When } x \text { is negaitve, }|x|=-x\right] \\
& =\lim _{x \rightarrow 0}(-1) \\
& =-1
\end{aligned} \\
& \begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left[\frac{|x|}{x}\right] \quad \\
& \left.=\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \quad \text { [When } x \text { is positive, }|x|=x\right] \\
& =\lim _{x \rightarrow 0}(1) \\
& =1
\end{aligned}
\end{aligned}
$$

It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.

